新闻中心
当前位置 > 首页 > 新闻中心 > 行业资讯

深远海风力发电技术的现状和难题

2023-01-05

技术难题

1大容量风机技术

风电机组是海上风电的核心,深远海域海上风电场所采用的风电机组一般考虑符合大容量、高可靠性等性能要求,同时需能够满足国产化自主可控要求。

目前我国已形成4至5兆瓦海上风机批量制造能力,6兆瓦级风机研制能力基本普及,7兆瓦及以上风机产品研制和发布数量增多;首批7兆瓦风机在福建沿海投入商业运行,首台8兆瓦风机下线,10兆瓦大容量风机正在研发;叶轮直径可大达到180米等级。欧洲市场目前7至8兆瓦等级风机逐步投入规模化商业运行;三菱维斯塔斯10兆瓦风机正式推向市场;通用电气12兆瓦风机预计今年安装样机,叶轮直径达到220米等级。


2远距离输电技术

海上风电并网的典型技术路线包括常规交流送出、低频交流送出和柔性直流送出等。

常规交流送出技术具有结构简单、成本较低、无需电能变换、工程经验丰富等特点,从技术、经验以及成本的角度来看,一般对于离岸不超过70千米、容量50万千瓦左右的近海风电场,交流输电具有一定的优势。但在大容量远海风电并网的应用场景下,交流电缆电容效应会大大增加无功损耗,降低电缆的有效负荷能力。若采用常规交流送出方式则需在海底电缆中途增设中端补偿站,通过并联电抗器补偿,这会带来运维检修困难、整体经济性降低等问题。


3漂浮式基础技术

漂浮式结构成为在深远海域海上风电场基础结构型式的首选,与固定式风力机不同,漂浮式风力机浮式基础在海洋环境载荷作用下有一定的六自由度运动,在运行过程中可能存在倾斜、位移等问题。风力机位于距海面近百米的高空,漂浮式基础的微幅运动即可造成风力机的剧烈运动,不仅需要一定的加固、密封等优化措施,对风力机叶片、传动系统、控制系统等部件的设计都提出了很高的要求,以适应更加复杂的海上环境。

施工难题

目前,浮式风机的平台基础制造还是以钢质材料为主。但近些年,已有部分设计提出以预应力混凝土作为浮式基础平台的主材料。整个平台的制造过程可在船厂等陆上基地进行,标准化的流水线作业和大规模生产可大幅度降低制造成本。浮式平台基础重量大多在2000t以上,混凝土材料可达10000t以上。相比于固定式风机,浮式风机在浅水区域并不具有经济优势,但其平台重量对水深变化不敏感,因此在深远海域逐渐凸显其成本优势。


下一篇:
返回列表